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1. Introduction. A number of iterative procedures have been developed for the 
approximate solution of a linear operator equation of the form Au = f, where f is 
a given element in some suitably normed linear space and A is either a matrix, an 
integral, or an abstract operator in this space. 

The purpose of this paper is to unify and extend investigations of finite al- 
gebraic systems by von Mises and Polaczek [10], Cesari and Picone [4], Quade [12], 
Keller [8, 9] and others [19]; integral equations of the Fredholm type by Neumann 
[5], Wiarda [18], Bilckner [2, 3], Wagner [17], Samuelson [14], and Fridman [7]; 
and operator equations in abstract Hilbert or Banach spaces by Sch6nberg [15], 
Rail [13], Bialy [1], and Petryshyn [11]. 

This generalization and unification of various methods in terms of conditions 
for convergence and error estimates is accomplished by studying a rather general 
iteration procedure of which the above methods are special cases. It is hoped that 
the procedure presented here can be used as a basis for possible discovery of new 
iterative methods when applied to concrete problems. 

2. Existence, convergence, and error estimate. Let X denote a complete real 
or complex normed linear vector space, P a linear bounded operator in X, and R(P) 
the range space of P. We say that P is invertible if P has a bounded inverse P-' on 
R(P), i.e., P-' is such that Pl'Pu = u for all u C X and PP-'v vfor all v C RI(P). 
If, in addition, R(P) = X, then P is called continuously invertible. Let m and M 
be non-negative real numbers defined by 

(a) m(P) = g.I b Pu M(P) = l.u.b P- 
utH 5' U FQ1<0 1 U 1 

for all u C X. It is known [1] that P is invertible if and only if m(P) > 0. Further- 
1 

more, if m(P) > 0, then P-l = and 7n(P)AI(P-1) 1. 

Our problem is to develop a general iteration procedure for the approximate 
solution of the operator equation 

(1) A =i 

where f is a given element in X and A is a given linear bounded operator in X. 
Our first step in this direction is to investigate the existence and the uniqueness 
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of the solution of equation (1) when A satisfies certain conditions stated in Theorem 
1 or Corollary 1 below. 

THEOREM 1. Equation (1) has a unique solution u* for every f in X if and only 
if there exists a continuously invertible operator C and a bounded linear operator B 
with an inverse B-' having the property that the series 

00 

(2) E Ttg 
i=O 

converges for every g in X, where T = C-'L and L = C - BA. The solution u* in 
this case is given by the sum of (2). 

Proof. Let f be an arbitrary element in X and C and B be some operators 
having the above property. If we put g = C-'Bf, then in view of the completeness 
of X and our hypothesis the series (2) converges to some element u* in X. Moreover, 
u*is a solution of equation (1) for if u* = Z o TVg, then Tu* =u* - g or equiv- 
alently C-lBAu* = C-'Bf. This and our conditions on B and C imply that Au* = f; 
i.e., u* is a solution of (1). To show that u* is a unique solution of equation (1) 
let us suppose that equation (1) has another solution u # u*. Then v = u - u* # 0 
and Av = 0 or BAv = 0. This implies that Cv - BAv = Lv = Cv or equivalently 
that ( 1 -T)v = 0 from which it follows that the operator (I - T) has no inverse. 
This, however, is a contradiction to the hypothesis (2) for, if the series (2) con- 
verges for every g in X, then (I - T) exists and 

00 

(2') (I- T)[g = E Tig 
i=O 

for every g in X. In fact, if (I - T)h = 0 for some h # 0, then h = Th = Tlh = 

**= Tnh. Put hn?- = z6=o T'h. By hypothesis (2), lim2 h J?1 = T=o TVh 

exists. Now lim, ( ? 1 hn+) I imn ? 1lim hn+1 = O limn hn+1 = 0. But 

limn ( 41 hn+1) = limn h = h. Thus h = 0. This implies that (I - T)-' exists 

and that u = u* is a unique solution of equation (1). Since T is bounded and 
u* = Z=o T'g, (1 - T)u* = limn D-o Tig - limn Earl T'g = limn g = g 
whence we conclude that u* = (1 -T)-1 = Z=o Tg. This proves the first 
part of Theorem 1. 

To prove the converse of Theorem 1 note that if equation (1) has a unique 
solution u* for every f in X, then A is continuously invertible. We may thus choose, 
for example, C to be an arbitrary continuously invertible operator in X and B = 

?7CA ', where q is a complex number such that I 1 < 1. Then B' = AC-' 

exists and T = CAL = C'(C - BA) = 1 - r. Since 11T = | n- 1 < 1 

and 11 Tn II _ T Ho the series (2), Z2=o TVg = Z=o (1 - 7q)ig, converges to 
some element in X for any g in X. Suppose we denote by u the sum of the latter 

00 ~~~1 
series when g = C-'Bf. Since, on the other hand, Zl=.0 (1 - ?)ig = - g, we have 

77 

u = -g 1 C-1Bf-- 1 C-17CA-'f = A-1f. This shows that u = u* and completes 
77 77 o7 

the proof of the theorem. 
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Let us observe that in some practical cases it may turn out that the verification 
of the very general condition (2) is not easy. In these cases the following corollary 
can be used in which condition (2) is replaced by conditions that are simpler but 
more restrictive and in some cases easier to verify. 

COROLLARY 1. The assertion of Theorem 1 remains valid if condition (2) is re- 
placed by one of the following three conditions 

(2.1) lim l'; TY' < 1, for every g C X, 
n 

(2.2) limrA 11 T? nI < 1 
n 

(2.3) iT < 1, 

whose degree of restriction increases in the given order. 
Proof. We see from the proof of Theorem 1 that it is sufficient to show that 

(2.3) X=> (2.2) =: (2.1) => (2). Let or(T) denote the spectrum of T, i.e., the set 
of all complex numbers X for which the operator (XI - T) is not continuously 
invertible, and r(T) = supXIE,(T) X , the spectral radius of T. It is known [16] 
that 

(3) r( T) = lim Y1I T n 
n 

and that for every positive integer n 

(4) r(T) < atjj Tn1 

Thus, in view of (4) with n = 1, (2.3) =- (2.2). To show that (2.2) ==: (2.1), we 
consider the series 

(5) Z ATg 
i=O 

where , is a complex number and g is any element in X. The radius of convergence 
r of (5) is given by the formula 

r~~~~ (6) 
n 

with the property that (5) converges for 1,4 < r and diverges for 1,4 { > r. Since 
for each n and g in X, 11 T'g 1 _ T n 11119 g we easily derive from (3) and (6) 
that 

(7) r(T) > - (= lim 4/'l T7g 11) r n 

Thus, by (7) and (6), if r(T) < 1, then lime A' 7/ ( < 1 for each g; i.e., (2.2) > 
(2.1). Finally, if limn n1' '1Ig < 1 for every g in X, then r > 1 and thus by the 
above mentioned property of r the series Z=o T'g, which is (5) with , = 1, con- 
verges in X. 

Remark 1. In case C = I and B is continuously invertible, Theorem 1, under 
the more restrictive condition (2.3), was proved by Rall [13]. 
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THEOREM 2. If for every f in X equation (1) possesses a unique solution u* in X, 
then the sequence { u, +1} of iterants determined by the process 

(8) CUn+1 = LUn + f n = O. 1, 2, 

where C and L are the same as in Theorem 1 and fi = Bf, converges to the solution 
u* of equation (1) for any initial approximation uo in H if and only if condition (2) 
of Theorem 1 is satisfied. In case of convergence the error estimate is given by 

(9) 1 un+j - u* 11 < Il(BA)F'L 1111 Un+1 - Un 

or by a less precise but a more practical estimate 

(10) 
~ ~ ~ * M(L) 

(10)11 Un -* 
1= 

< 
m(BA) fl Un1 u- Unl 

Proof. Let the sequence {unt1} be determined by (8) or equivalently by 

(11) Until = Tun + g, 

where g = CU1f and T = C71L. We find from (11) by induction that 

n 
(12) U E 1 >j T'g + T n+1u0 

intO 

Equation (12) implies that the sequence {un+1} converges if and only if the series 
(2), E2=o Ttg, converges. By Theorem 1, the limit u* = limn Until, which is the 
same as the sum of the series (2) with g = C-'f1, satisfies equation (1) and is 
independent of the choice of uo for condition (2) implies that limn T'+'uo = 0 for 
any u0 E X, i.e., (2.1) =X (2). 

To derive estimates (7) and (10) let u* be the exact solution and un+j an ap- 
proximate solution of (1) determined by (8). Subtracting LUn+1 from both sides 
of (8) we get CUn+ -LUn = L(Un - un+?) + f, or BAun+1 = L(Un - Un?i) + fi. 
On the other hand, BAu* = fi and, therefore, subtracting the corresponding sides 
in the last two equations we obtain 

(13) BA(Un+1 - U*) = L(un -Un+l) 

Note that (2') implies that m(BA) > 0 for, by (2'), the operator (I - T)1= 
[I - (I - C-'BA)]-' = (C-'BA)-' exists on all of H and is bounded. From this 
we see that (BA) has a bounded inverse given by (CiYBA)k7C-1. The error esti- 
mates (9) and (10) follow now immediately from (13) and the properties of m and 
M as defined in (a). This completes the proof of Theorem 2. 

COROLLARY 2. For convergence of the sequence {Un+?} determined by (8) to the 
solution uh of (1) for a given f in X it is sufficient that there exist operators C and B 
satisfying any one of the more restrictive conditions (2.1), (2.2), or (2.3) of Corollary 
1. The error estimates in this case are the same as in Theorem 2. 

At the end of this section let us remark that in case C is invertible, B possesses 
an inverse B-1, R(C) D R(BA), and X0 denotes the subspace of X consisting of 
all elements g in X of the form g = C-'Bh, h E R(A), then from the arguments 
of the first part of Theorem 1 and Theorem 2 we derive 

COROLLARY 3. If, for a given, f in X, equation (1) is solvable, then for any initial 
approximation uo in Xo the sequence {Ju,+1} determined by (8) converges to the solution 
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of (1) if the series Z??=o TVg converges for every g in Xo, where T = C01L with C 
and B having the properties specified in the last paragraph. 

3. Special Cases. The general method (8) is not precise until the choice of C 
and B has been made. In this section we classify a number of suggested iterative 
methods for the solution of (1) by specifying operators C and B in (8) or (11). 
At the same time, some of the methods that were investigated and used before 
only for finite matrix equations will thus be extended to operator equations in 
infinite dimensional normed linear spaces. In order not to repeat ourselves each 
time when we specify a particular method it will be assumed, in what follows, 
that equation (1) is solvable and that in various special cases the resulting operator 
T = C-1(C - BA) = I - C1BA satisfies at least one of the conditions of Section 
1, thus ensuring the convergence of {un+1}. Furthermore, if for a given special 
method of (8) or (11) the operator T satisfies the corresponding condition of 
Theorem 2 or any one of Corollary 2, then for each special method considered 
below the corresponding error estimates (9) and (10) remain valid. 

Method la. If C = I and B = a > 0, where I is the identity operator in X 
and a is a real parameter, then (8) reduces to the standard iteration 

(8.la) Ur+1= (I - aA)Un + af 

which converges to the solution of (1) if a is so chosen that T = I - aA satisfies 
the conditions of Section 1. 

In particular, if we assume that or(A) contains only eigenvalues X of A, then 
-( T) also contains only eigenvalues , of the form g = 1 - aX and, therefore, exactly 

as in the author's paper [11] one shows that convergent schemes (8.1a) can be 
found if ReX > 0. Indeed, in that case a suitable a can be determined corresponding 
to any circle in the (x, y)-plane (X = x + iy) which passes through the point 
(0, 0), has a center on the real x-axis, and which is such that all eigenvalues X of 

A lie in its interior. If (-, o) is the center of such a circle; i.e., of - _ )2 + y2 = 

2' then this value of a gives a convergent scheme. If, in addition, A is symmetric 

and X > 0, then from the above remark (also see [11]) one easily derives that 
(8.1a) converges for any a in the interval 

(14) 2<ca< 
2 

where the number X = A 11 is the largest eigenvalue of A [16]. 
Let us note that in case A is an integral operator determined by a square sum- 

mable symmetric and positive definite kernel in L2(a, b) the convergence of (8.1a) 
with a satisfying (14) was proved by Fridman [7]. Bialy [1] extended his results 
to the case when A is a non-negative symmetric operator in a Hilbert space H by 
showing that for a satisfying (14) scheme (8.1a) converges to a solution of (1) 
if and only if (1) is solvable. 

Remark 2. The above discussion applies fully to the case when ReX < 0 if X are 
complex and to the case when X < 0 if X are real and A is symmetric. 

Method lb. If A is not symmetric, then instead of (8.1a) one may use 

(8.1b) u +I = (I - aA*A)u?, + aA*f 
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which is (11) with C = a1, B = A*, and T = I - aA*A. Formula (8.lb) was 
proposed for matrix equations by Quade [12] who proved its convergence for any 
a in 

(15) 0<2a< 
2 

Bialy extended the applicability of (8.1b) to operator equations in H. Note that 
since A*A is a non-negative operator in H and 11 A*A 11 = 11 A 112 the procedure 
(8.1b) is (8.1a) applied to the equation A*Au = A*f which, as can be easily proved, 
is equivalent to equation (1) since (1) is solvable. 

Method ic. If A is a symmetric but not positive integral operator of the form 
A = I - XK, then Btickner [3] suggested the procedure 

(8.1c) Un+1 = (I - (-1)n-1'A)un + (-1)' nl f 

which, as was also shown by Bialy for an arbitrary symmetric operator A in H, 
converges for all A in the interval 

(16) 0< < 

It follows from (8. ic) that its equivalent iteration formula is 

(8.1c') u+1 = (I - f2AA)u,_j + /32Af 

which is (11) with C = A-2, B = A, and T = I - f2AA for the subsequences 
{IU2} and {u2n +1}. The inequality (16) implies (15) with a = 32. Since equation (1) 
is solvable, both subsequences converge to the same solution of (1). 

Method 2. If A is a non-singular matrix, then Cesari and Picone [4] proposed a 
method of the form 

(8.2) Cun+1 = (C - A)un + f 

where C is an arbitrary non-singular matrix. This is the process (8) if we take 
B = I and C an arbitrary continuously invertible operator in space X. Theorem 
2 and Corollary 2 extend the applicability of (8.2) to linear operator equations in 
X and supply it with the corresponding error estimates provided that 

T = C7'(C - A) 

satisfies the specified condition. Recently Frey [6] generalized the process (8.2) 
to a special kind of nonlinear operator equations in Banach space under the as- 
sumption that uo = C-'f and 11 T 11 < 1, where T is in this case nonlinear. 

Method 3. If C = I and B is an arbitrary continuously invertible operator in 
X, then (8) reduces to the method 

(8.3) Un+1 = (I - BA)Un + Bf 

whose convergence and error estimate were obtained by Rall [13] under the as- 
sumption that T = I - BA satisfies the stringent condition (2.3). In the case 
in which A is a nonsingular matrix and B = D-1, where D is a diagonal matrix, 
method (8.3) was first used by von Mises and Polaczek-Geringer [10]. Our Theorem 
2 and Corollary 2 extend the validity of method (8.3) to operator equations for 
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which the operator T satisfies the weaker conditions (2.2), (2.1), or even the 
general condition (2). 

Method 4. Let A be of the form A D - S - Q and X be a positive real num- 
ber. If we take C = D - oS and B = 4I, then L = (1 - o)D + oQ and (8) 
reduces to the generalized overrelaxation iterative method 

(8.4) (D - woS)u,)U = [(1 - w)D + wQ]u, + of 

whose convergence and error estimates (9) and (10) were obtained by the author 
[11] in the case in which X = H under the assumption that A is K-positive definite; 
i.e., there exists a linear operator K and a constant A > 0 such that (Au, Ku) > 

d3[jKu II2 for all u E H, (Du, Ku) is real for all u, G(o) = D - S + Q* 

(where Q* is the adjoint of Q) is K-positive definite, and D - oS is continuously 
invertible.t Under these conditions it is shown that 

T = (D - wS) '[(l - o)D + cQ] 

satisfies condition (2.2)tt provided that K and v(T) satisfy the conditions speci- 
fied in [11]. In the case in which Q = S*, K = I, and A is a finite matrix, (8.4) 
was thoroughly investigated by Young [19]. 

Method 5. If A = D - S - S* and if we choose C = D - S and B = I, then 
L = S* and (8) becomes the Gauss-Seidel method 

(8.5) (D - S)u8 = S*u, + f 

for which Section 1 supplies the convergence and error estimates when (8.5) is 
applied to operator equations in X. For example, if D = I, Fredholm integral 
equations of the second kind in the L,(a, b)-spaces 1 < p < oc can be split in 
this way. This can also be done for the space C(a, b). 

Method 6. Let A = N - P, where N is continuously invertible, and ao # -1 
be a real number. If we choose C = (1 + a)N and B = I, then L = P + aN and 
(8) reduces to the procedure 

(8.6) (I + a)Nu,?+ = (P + aN)u, + f 

proposed by Keller [9] for finite matrix equations and extended by the author [11] 
to operator equations in H for the case when -(N-'P) contains only eigenvalues 
X of finite multiplicity such that either X < 1 or X > 1 if X are real and either ReX < 1 
or RX > 1 if X are complex. 

Method 7. Suppose A = I - W - V and a and d are two real non-zero param- 
eters. In case WV = VW and W and V are finite symmetric matrices Keller [8] 
studied the following method 

(8.7) (oaI - #W)u,+1 = [(a - 1) - (i - 1)W + V]un + f. 

t The cases when A is only K-positive and K-non-negative as well as the problem of opti- 
mum parameter X for (8.4) are also considered in [11]. 

tt Added in proof: The results containing much more general necessary and sufficient 
conditions for the spectrum r(T) of T(w) to lie in the interior of the unit circle were since ob- 
tained by the author and will be contained in an article to appear in the Proceedings of Amer. 
Math. Soc. 
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In view of Theorem 2 and Corollary 2, the method (8.7) is also applicable to oper- 
ator equations in X since it is (8) with C = aI - fW, B = I, and 

L = (a - 1)I- ( - 1)W + V = C- A 
provided, of course, that C and T= C'L = I - (a -W) -'A satisfy the corre- 
sponding conditions for suitably chosen a and A. 

This will be the case if, for example, we assume that X is a Hilbert space H; 
the operators W and V are completely continuous, symmetric, and commutative; 

the number ' is not an eigenvalue of W; A is positive definite; and the set of eigen- 

vectors of W and of V is complete in H. Indeed, if W and V satisfy these properties, 

then C - A I - W) is continuously invertible and furthermore one can generalize 

to the Hilbert space H the following lemma which allows us to extend the argu- 
ments and the results A Keller [8] to the case when (8.7) is applied to the solution 
of the operator equation (1) in H in which A = I - W - V. 

LEMMA. If V and W in H sasisfy the above conditions, then they possess a complete 
set of common eigenvectors {I i }I, such that Wki- = t, and Vi = nio, i = 1, 2, * 
where ti and qj are the corresponding eigenvaleus of W and V. 

Proof. Since W is symmetric and completely continuous each of its eigenvalues 
Us is real and has a finite multiplicity n . Suppose that { ti}, where each Us appears 
ni times, are so ordered that { (i f} is a non-increasing sequence. Let Hi be the 
eigenspaces of W corresponding to the eigenvalues (i ; i.e., Hi is the ni-dimensional 
set of all u in H such that Wu = (iu, which is the same as to say that Hi is the 
null-space of the operator Wi = W - tJ. It is known [16] that Hi is orthogonal 
to Hj for i % j and that the direct sum of Hi is the whole space H. 

We shall now construct a complete set of eigenvectors {4'il, common to both 
W and V. Let us fix i, say i = 1. It is obvious that WV = VW implies that WjV = 

VWi. Hence, the null-space H1 of W1 and the range R1 of W1 are invariant under 
V; i.e., VH1 C H1 and yR1 C R1. Since R1 is an orthogonal complement of H, in 
H, H = H1 G R1, the pair (H1, R1) reduces V and, therefore, V can be repre- 
sented on H, as an nj X nj symmetric matrix. This implies that V considered in 
H1 possesses n1 eigenvectors 1), 022, * * *, 0el which span H1 and can be chosen to 
be orthonormal. The elements '1, 4)2, * *, 4 - are also eigenvectors of W since by 
assumption all vectors of H1 are eigenvectors of W corresponding to the eigenvalue 
0j. Now, considered only on R, = H e H1, the operators W and V have the 
same property as originally on H. We may therefore proceed with this process by 
applying it to R, instead of H and replacing H1 by H2 and thus obtain a common 
set of eigenvectors nl+l?, Onl+2, * **, 4ins of W and V in H2 . Continuing this process 
sequentially for i = 1, 2, 3, , we obtain a complete sequence of eigenvalues 
4*), n . ,n2 common to both W and V. 

In view of our lemma one can extend the procedure of Keller to show that for 
any positive definite operator A = I- W - V there exist open regions in the 

a~~~~ 
(x, y)-plane,t where x a and y - , such that for all (x, y) in these regions (3 ~a 
the operator C = aI - 3W is continuously invertible and T = I - (aI - 3W)1A 
satisfies condition (2.2). 

t For the description of these regions and other details see [81. 
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For the rest of this section we shall assume that A = I - 77K, where v is a 
numerical parameter and K acts in X. In what follows we shall, for the sake of 
completeness, reformulate in terms of our conditions the iterative methods surveyed 
by Rall [13]. 

Method 8. The simplest procedure is that of Neuman [5] 

(8.8) u.+ = -7Kun + f 

which is (8) with C = I, B = I, and T = tK. The two practically useful condi- 

tions on T are (2.2), which in our case reduces to the requirement that 71 < (1) 

and the more restrictive condition (2.3): 1 q < 1K 11. In case K is completely 

continuous and symmetric these conditions reduce to the same requirement 

(17) 1m1 < Ind, 
where n7 is, in absolute sense, the smallest characteristic value of K. 

Method 9. If K is a positive definite and symmetric integral operator condition 
(17) was removed by Wiarda [18] who used the iteration 

(8.9) un+1 = [0I + (1 - 0)'qK]un + (1 - 0)f, 0 id 1. 

Formula (8.9) is (8) with C = I, B = (1 - )1, and T = OI + (1 - 0)2K. 
Biickner [2] extended the investigations of Wiarda to nonsymmetric integral 
equations while Schbnberg [15] generalized their results to the operator equations 
in a Banach space with T satisfying condition (2.1). 

Method 10. If B = I and C-l = _ Kx where K is an integral operator in 

a suitably chosen space X, and x = 1, then (11) becomes the method proposed by 
Wagner [17] 

(8.10) Un+1 =(I - C 'A)un + Cjf. 

Method 11. As the final special case we consider the method 

(8.11) Un+j = [I - (I + J)A]Un + (1 + J)f 

studied by Samuelson [14]. Formula (8.11) is (8) if we choose C = I, B = I + J, 
where J is such an operator that T = I - (I + J)A satisfies any one of our con- 
ditions in Section 1. It was suggested by Samuelson that J should be taken to be 
an approximation to the resolvent G, of qK. Let us note that since 

T = [A' - (I + J)]A = (G,, - J)A 

it follows from the properties of spectral radii [16] that if KJ = JK, then 

T = (G', - J)A = A(G, - J) and r(T) < r(G, - J).r(A). 

This shows that T satisfies condition (2.2) if J is so chosen that r(G - J) <( 
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